The Variations and Trends of MODIS C5 & C6 Products' Errors in the Recent Decade over the Background and Urban Areas of North China
نویسندگان
چکیده
With ten-year (2004–2013) ground-based observations of Beijing Forest (BJF) and Beijing City (BJC) sites in North China, we validated the high-quality MODerate resolution Imaging Spectroradiometer (MODIS) Collection 5 (C5) and Collection 6 (C6) Aerosol Optical Depth (AOD) products’ precision and discussed the sensors degradation issues. The annual mean AOD and Angstrom exponent (α) were 0.20 ± 0.02 and 0.83 ± 0.15 in the background over the past ten years, and they were 0.59 ± 0.07 and 1.13 ± 0.08 in the urban, respectively. Ground-based AOD had both slightly declining trends, with variations of 0.023 and 0.057 over the past decade in the background and urban, respectively. There were large differences among the eight kinds of MODIS AOD products (Terra vs. Aqua, C5 vs. C6, DT (Deep Target) vs. DB (Deep Blue), and DTDB in the background and urban areas), but all the products’ monthly errors had larger variations in the spring and summer, and smaller ones in the autumn and winter. In the background, more than 62% of DT matchups for C5 and C6 products were within NASA’s expected error (EE) envelope. In the urban, 69%~72% of C6 DB retrievals were falling within EE envelope. The new dataset named C6 DTDB had better performance in the background, whereas it overestimated by 37%~41% in the urban caused by surface reflectivity estimation error. The range of monthly average error varied from −0.21 to 0.28 in the background and from −0.63 to 0.48 in the urban. From the background to the urban areas, the retrieval errors of Terra and Aqua had slightly increased by 0.0023~0.0158 and 0.0011~0.0124 per year, respectively, which implied that the two MODIS instruments had degraded slowly.
منابع مشابه
Evaluation of MODIS LAI/FPAR Product Collection 6. Part 2: Validation and Intercomparison
The aim of this paper is to assess the latest version of the MODIS LAI/FPAR product (MOD15A2H), namely Collection 6 (C6). We comprehensively evaluate this product through three approaches: validation with field measurements, intercomparison with other LAI/FPAR products and comparison with climate variables. Comparisons between ground measurements and C6, as well as C5 LAI/FPAR indicate: (1) MOD...
متن کاملReanalysis of global terrestrial vegetation trends from MODIS products: Browning or greening?
Article history: Received 2 July 2016 Received in revised form 4 December 2016 Accepted 29 December 2016 Available online 25 January 2017 Accurately monitoring global vegetation dynamics with modern remote sensing is critical for understanding the functions and processes of the biosphere and its interactions with the planetary climate. The MODerate resolution Imaging Spectroradiometer (MODIS) v...
متن کاملInvestigation of changes in surface urban heat-island (SUHI) in day and night using multi-temporal MODIS sensor data products (Case Study: Tehran metropolitan)
The term urban heat island (UHI), described the phenomenon of climate change in urban areas compared with surrounding rural areas. UHI effects include: increasing in energy and water consumption, air pollution expansion and interfering in thermal comfort. Surface urban heat island (SUHI) contains patterns of land surface temperature (LST) in urban areas that has interaction with UHI in urban ca...
متن کاملUncertainty of Remote Sensing Data in Monitoring Vegetation Phenology: A Comparison of MODIS C5 and C6 Vegetation Index Products on the Tibetan Plateau
Vegetation phenology is considered a sensitive indicator of climate change, which controls carbon, nitrogen, and water cycles within terrestrial ecosystems. The Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) is an important moderate resolution remote sensing data for monitoring vegetation phenology. However, Terra MODIS Collection 5 (C5) vege...
متن کاملInvestigating the 15-year-old seasonal variations in leaf area index using MODIS sensors in Iran
Today, it is widely used satellite imagery to monitor vegetation cover. The aim of this study is to analyses the leaf area in the period of 1395-1381 with the spatial resolution of a kilometer using the data of two remote sensing products of MODIS Terra and Aqua and seasonally. For this purpose, data were analyzed and statistical-mathematical compilation, coding and database creation were done ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Remote Sensing
دوره 8 شماره
صفحات -
تاریخ انتشار 2016